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ABSTRACT

Artificial neural networks (ANN) are computer systems that differ from other pat-
tern recognition methods in their ability to ‘learn’ one or more target variables from a
set of input variables. These systems learn by self-adjusting a set of parameters to
minimize the error between the desired output and network output. 

To explore the potential of artificial neural networks for predictions of paleo-ocean-
ographic parameters from relative abundances of calcareous nannoplankton species
we analysed observations taken from the literature for (1) the prediction of sea surface-
water temperature (SST) in samples from offshore southern California, and (2) the pre-
diction of oxygen isotopic values in a Quaternary core from the eastern Mediterranean. 

We employed a back propagation (BP) neural network to assess the ability of the
network to predict SST and oxygen isotopic values. Each of the data sets was divided
into five random training and test sets to assess the stability of the error rate estimates.
For the California Bight samples we obtained an average Root-Mean-Square-Error of
Prediction (RMSEP) in the test sets of 0.68, implying that an unknown SST can be pre-
dicted with a precision of ± 0.68°C. In the Mediterranean samples the average RMSEP
in the test sets was 0.64; hence an unknown oxygen isotope value can be predicted
with a precision of ± 0.64 δ18O‰ vs. PDB.

ANN techniques can be seen as a complementary tool to more conventional
approaches to paleoceanographic data analysis. Such techniques hold great potential
for making predictions of various types of variables from paleontological data.
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INTRODUCTION

The large amounts of nannoplankton
data collected worldwide require sophisti-

cated and powerful quantitative methods
of analysis for the extraction of the opti-
mum amount of information on species
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distributions through which paleoceano-
graphic reconstructions might be based.
One of the analytical methods now avail-
able is the artificial neural network (ANN)
approach for data analysis and forecast-
ing. 

Artificial neural networks are computer
systems that have the ability to ‘learn’ a
set of output, or target, variables from a
set of input variables. Neural networks
have been employed in many disciplines
for problems of prediction, classification,
or control of various processes. This
remarkable success can be attributed to a
few key factors. 

Neural networks are numerically
sophisticated modelling techniques, capa-
ble of modelling extremely complex func-
tions. For many years, linear modelling
has been the most commonly used model-
ling technique in paleo-oceanography
because linear models have well-known
optimization strategies. In cases where the
linear approximation was not valid (which
was frequently the case in nature) the
models suffered accordingly. Neural net-
works analyse the dimensionality problem.
This distinguishes them from attempts at
modelling nonlinear functions with large
numbers of variables;

Neural networks learn by example.
The neural network user gathers repre-
sentative data, and then invokes training
algorithms to automatically learn the struc-
ture of the data. In addition, neural com-
puters have the ability to learn from
experience in order to improve their per-
formance, and can adapt their behaviour
to new and changing environments. The
level of user knowledge needed to suc-
cessfully apply neural networks is much
lower than would be the case using more
traditional statistical methods;

Neural networks tend to be more reli-
able and versatile than conventional data
analysis and modelling methodologies.
They have the ability to cope well with

incomplete (e.g., small samples), ‘fuzzy’
data, and can deal with previously unspec-
ified or unencountered situations. Neural
networks are very tolerant to analytic
faults. This contrasts with conventional
systems, where the failure of one compo-
nent of the analysis usually means the fail-
ure of the entire analytic system.

In the earth sciences, neural networks
have been applied to problems of well-log
interpretation (Baldwin et al. 1989; Bald-
win et al. 1990; Rogers et al. 1992), for the
identification of linear features in satellite
imagery (Penn et al. 1993); for geophysi-
cal inversion problems (Raiche 1991), for
the correlation of volcanic ash layers
(Malmgren and Nordlund 1996); and for
the establishment of present-day climatic
zonation in Puerto Rico (Malmgren and
Winter 1999). Malmgren and Nordlund
(1997) applied a BP neural network in an
attempt to predict modern sea surface-
water temperatures (SST) from relative
abundances of planktonic foraminifer spe-
cies in the southern Indian Ocean. That
study showed the BP technique to be able
to reproduce the SST data more faithfully
than conventional techniques such as the
Imbrie-Kipp Transfer Functions (Imbrie
and Kipp 1971) and Modern Analog Tech-
nique (Hutson 1979). These results indi-
cated that late Quaternary summer and
winter SST’s may be predicted with a pre-
cision of ±0.7-0.8ºC using the trained BP
network.

With data gleaned from the literature
we here make a first attempt at testing the
applicability of ANN to reconstruct SST
and stable isotope data from relative abun-
dance data of calcareous nannoplankton
species.

MATERIAL AND METHODS

The Nannoplankton Data Sets

We used two datasets from published
studies. The first dataset concerns sea-
sonal changes in coccolithophore cell den-
2
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sity and species composition, and the
relationship between species composition
and SST in the San Pedro Basin, South-
ern California Bight (Ziveri et al. 1995b).
The second dataset utilizes data from a
paleoceanographic study based on nan-
nofossil assemblages from the eastern
Mediterranean (Castradori 1992, 1993). 

The Californian dataset consists of
nannoplankton samples collected at 14
stations and SST measurements simulta-
neously obtained during several expedi-
tions between October 11, 1991 and July
20, 1992. Several studies in coastal
upwelling environments (Winter 1985;
Mitchell-Innes and Winter 1987; Klejine et
al. 1989; Giraudeau et al. 1993; Ziveri et
al. 1995a; and Thunell et al. 1996) have
shown that coccolithophores can be
important contributors to the total phy-
toplankton population as well as that their

distributions are related to variation in
nutrient compositions and SST. This
region, influenced by the El Niño-Southern
Oscillation (ENSO), is marked by the fol-
lowing oceanographic changes from near-
shore to deeper waters: deepening of the
thermocline, warming of the surface-water
mixed layer, reduced coastal upwelling,
enhanced onshore transport of low salinity
waters (Ziveri et al. 1995b). Changing coc-
colithophore assemblages—and more
complex relationships between cell den-
sity, abundance variations, and SST—
reflect these changes. 

From the total association we consid-
ered, the most abundant and continuous
species (Table 1)—Emiliania huxleyi—
was found to be the dominant species
accounting for approximately 60% of the
assemblages (with a maximum of 80% in
July 1992). High percentages of E. hux-

Table 1. Percent abundances of the coccolithophores in the California Bight samples analysed using SEM. 

*Syracosphaera spp. consists of: S. anthos, S. binodata, S. corolla, S. corrugis, S. epigrosa, S. histrica, S.
nana, S. nodosa. S. orbiculos, S. pirus, S. prolongata, S. pulchra, S. rotula, S. sp. 1, S. sp.2.

Samples E. huxleyi % G. oceanica 
%

U. sibogae % R. longistylis % * Syracos. spp. SST ×C

10/11/91 70.21 1.06 0 7.45 0 18.73

12/16/91 47.12 0.52 0 0 2.61 14.34

1/29/92 36.94 2.24 4.85 23.13 6.34 14.99

3/16/92 77.63 1.97 1.32 2.96 5.92 15.13

3/23/92 59.53 4.65 2.79 4.19 5.14 15.71

4/17/92 57.77 0.49 17.96 4.85 7.78 17.9

5/1/92 62.87 0 7.92 0.99 6.94 18.29

5/11/92 58.94 1.45 8.21 0 5.31 18.5

5/15/92 40.69 0 10.39 3.03 3.04 18.44

6/5/92 63.89 0.46 0.01 0.46 3.69 17.16

6/12/92 63.29 0.97 1.93 3.86 3.87 18.18

7/2/92 43.48 2.17 2.17 0 0 17.89

7/10/92 80.21 2.08 2.08 0 2.08 19.93

7/20/92 62.5 3.29 9.21 0 1.32 21.33
3
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leyi indicate a fairly well-stratified water
column (Brand 1994); blooms of E. hux-
leyi sometimes follow large blooms of dia-
toms (Probyn 1993). Umbilicosphaera
sibogae was the second most-abundant
species; this species has an ecological
preference for warm oligotrophic waters
(Okada and McIntyre 1979; Giraudeau
1992). Other abundant species recog-
nized in this area include: Rhab-
dosphaera longistylis, which is abundant
in temperate waters (McIntyre et al. 1970;
Gaarder, 1970) with no specific sensitivity
to high nutrient levels (Brand 1994);
Gephyrocapsa oceanica, which is
adapted to warm and nutrient-rich coastal
waters (MacIntyre et al. 1970; Okada and
Honjo 1975; Okada and McIntyre 1977),
and Syracosphaera spp., mainly repre-
sented by Syracosphaera pulchra, which
has a preference for warm temperate
waters with low nutrients (McIntyre et al.
1970; Roth and Coulbourn 1982; Pujos
1992).

The second data set is derived from a
quantitative analysis of calcareous nanno-
fossils in four eastern Mediterranean
cores. We selected one core (Ban82-
15PC), located near the Erodoto Abyssal
Plain (32°42’ N, 26°44’ E), for which both
oxygen isotope and nannofossil data were
available (Parisi 1987). This core spans
the last 500,000 years and contains seven
sapropel layers. The average sedimenta-
tion rate is 2.22 cm/k.y. The oxygen iso-
tope values range from –4.5‰ to 2.6‰
with a maximum glacial-interglacial
change of approximately 6.7‰ at Termina-
tion II; the highest enrichment lies at the
Pleistocene-Holocene boundary (Parisi
1987). The nannoplankton assemblage
alters from dominance of E. huxleyi in the
upper part (Emiliania huxleyi Acme
Zone) to dominance of small Gephyro-
capsa and G. oceanica in the lower part.
Other species, like Helicosphaera cart-
eri, Syracosphaera spp., Gephyrocapsa

caribbeanica, were also recognized in all
samples but with lower relative abun-
dances. On the whole, the nannofossil
species abundance reflects a temperate
oligotrophic water association. We
selected the eight most abundant species
(Table 2). Often this group of species rep-
resents 90% of the association. 

THE NEURAL NETWORK STRUCTURE

Among the several ANN learning algo-
rithms available, BP is the most popular
(Figure 1A). The BP network consists of
an interconnected series of layers, each
containing a number of processing units
called ‘neurons’ (Figure 1B). The basic
steps in our application of the BP network
are: (1) training of the network on the
basis of a number of training sets, and (2)
assessment of the performance of the net-
work by computations of the error rates in
the test sets (details are given below). 

The main steps in the neural network
procedure are as follows: the input signals
(e.g., nannoplankton relative abun-
dances), enter the network via the input
layer; each neuron in the network pro-
cesses the input data, with the resulting
values steadily seeping through the net-
work layer by layer, until a result is gener-
ated in the output layer. The output of the
network is then compared with the actual
output value. This results in an error value,
representing the sum-squared difference
between the actual and predicted input. In
order to minimize this error value all the
weights at each connection of the network
are gradually adjusted in the direction of
the steepest descent with respect to the
error (the steepest-descent algorithm).
This process involves working backwards
from the output layer, through the hidden
layer, and back to the input layer, until the
specified error limit is reached. Fine-tuning
the weights in this way has the effect of
‘teaching’ the network how to produce the
4
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Table 2. Percent abundances of the nannofossils in Ban82-15PC core analysed using MOP (optical polarized micro-
scope).

Samples G. 
oceanica

E. 
huxleyi

G. 
caribbeanica

small 
Gephiroc. 

spp.

H. 
carteri

Syrac. 
spp.

C. 
leptoporus

Rhabd. 
spp.

δ18O

10 0.7 79.7 1 1.3 0.5 5.7 0.3 2.9 -1.67

15 1 76.7 0.3 5.3 4 4.2 0 3.7 -3.02

22 1.7 69 1 4.7 0.7 4.5 0 3.8 -0.48

30 1.3 66.7 2.3 5.3 0.7 2.9 0.2 2.4 2.63

39 0.3 37 1.3 5.3 3 4.7 0 3.3 2.35

50 1 26.7 3 7.7 1.7 6.3 0 2.7 1.96

81 1 30 1 9.3 3 5.7 0 3 1.57

100 1.3 54.3 1.7 3.3 1.7 2.7 0 2 2.22

120 1 42 4.3 12 2.3 5.3 0 3 0.63

139 2.3 34.3 1 22 3.3 6.7 0.3 2.3 1.83

165 9 4.3 25 35.7 0.5 3.6 0.3 2.1 -0.65

185 14.7 4.3 4 55 0.2 3.3 0 3.1 -0.9

202 6.7 22 4.7 19.7 1.3 4.7 0.3 2.7 -1.04

219 13.7 5 0.7 40.3 9.7 4.7 0.3 5.7 -3.37

221 33.7 4.7 0.3 42.7 5 4.5 0.6 3.5 -0.22

223 42.3 3.7 2.3 22.3 2.3 8.5 0.3 4.7 -1.17

247 4.7 7.3 10 57.3 0.8 5.6 0.4 1.2 -1.97

270 16.7 4.3 1.7 37 17 7 1.7 9.7 0.27

289 0.7 4.7 3 29 2.3 4.7 0.7 7.7 -1.14

304 9.7 13 0.3 52.3 3 8.4 1 2.2 -1.42

314 19 9.7 3 43 7.9 3 7.3 1.3 -2.39

329 41.7 6.7 2.7 31.3 3.5 1.6 1.6 2.8 2.23

349 1 2.7 5 74.3 0.9 1.2 0.2 1.2 0.52

360 19.7 1.7 1.3 52.7 1.7 5.2 0.2 3.9 -3.57

365 12.3 3.7 4 51.3 13.2 2.6 3.7 0.9 0.22

371 7 4.3 0.3 61.7 8.3 5.3 4.8 1.9 1.34

380 4.3 1 1 64.3 1.5 2.6 1.5 2.3 -0.42

391 12 1 0.7 63 7.5 4.7 7.2 1.9 -0.05

398 29.3 1 0.3 51.7 9.5 4.2 1.9 1.1 -0.7
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Table 2 (continued).

Samples G. 
oceanica

E. 
huxleyi

G. 
caribbeanica

small 
Gephiroc. 

spp.

H. 
carteri

Syrac. 
spp.

C. 
leptoporus

Rhabd. 
spp.

δ18O

412 30.7 1 0.3 36.7 20.7 6.6 1.6 0.9 -0.41

439 20 4 8.7 32.7 3 4 0.3 1.7 1.05

460 24.7 1 26 19.3 8.4 5.5 0.6 0.3 -0.8

485 11.3 0.3 8 63.3 2.9 2.4 1.2 1.5 -0.9

510 1.3 0 7.7 61.3 0.6 2.1 0 0.3 -0.98

516 19.7 0 1 64 2.9 3.8 0.8 4 -3.07

522 5 0 0.7 76.7 9 2.8 0.9 3.2 -1.38

529 4.3 0 0.3 80 5.7 4 1.4 2.6 -1.92

550 6.3 0 0.3 88.3 0.4 2.2 0.2 0.7 -1.41

575 33.7 0 14 31.3 0.6 4.4 0.2 3.4 0.28

598 12.7 0 31.3 36.7 0 2.7 0 1.5 1.42

625 52.3 0 16.3 23.7 0.3 2.8 0.1 1.7 0.57

646 40 0 29.3 22.3 0.1 3.2 0.1 1.8 0.26

666 25 0 31 31.3 0.3 2.5 0.4 1.5 -1.35

672 67.7 0 4.3 13 1.8 6.9 0.2 3 -2.53

674 31.7 0 47 15.3 1.1 1.5 0.2 0.9 -1.44

693 53 0 7.7 19.7 0.2 3.7 0.2 2 -1.59

726 15.3 0 43.3 34 0.4 2 0.1 1.5 -1.38

746 58.7 0 7 34.3 0.1 2.8 0 2.4 -0.64
‘desired’ output for a particular input. In
this way the network ‘learns’. 

The last three steps described above
usually have to be repeated a number of
times until the error value is minimized (in
the ideal case this error is zero). These
steps may potentially involve many thou-
sand training passes. This iterative pro-
cess is the kernel of the back propagation
algorithm. Finally, when the network has
converged (meaning, reached a preset
error limit), it will ideally be able to produce
the correct output for each input. Once the
network has been trained, it can be used
to predict the output signals used in the
training phase from new input signals.

In the analysis of the dataset from the
California Bight, we used five neurons in
the input layer (corresponding to the five
species of nannoplankton used as input
variables). In the Mediterranean dataset,
we used eight neurons in the input layer.
In both cases, the number of neurons in
the output layer is one (corresponding to
the SST and oxygen isotope data to be
predicted; Figure 2). The software used
was the NeuroGenetic Optimizer (NGO),
version 2.6, from BioComp Systems, Inc.
(http://www.biocompsystems.com).

This program automatically attempts
either one or two hidden layers to find the
optimum network. The program also
6
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allows the number of network cycles to be
specified prior to the start of the data pro-
cessing. Each of these cycles utilizes a dif-
ferent network configuration. The cycles
are divided into populations and genera-
tions that can both be varied. In addition,
the program searches the best solution by
varying the different number of neurons in
each of the different layers. The NeuroGe-
netic Optimizer attempts different types of
transfer functions within single neurons

(linear, logarithmic and hyperbolic tangent)
when performing genetic searches. 

RESULTS

In the California Bight data 14 sam-
ples were available. Half of these samples
have been used as the training set (seven
observations). The remaining half consti-
tuted the test set (also seven observa-
tions). To make sure that the error rate is
representative of the dataset, the network
was run five times, each with 50% random
training-set and 50% test-set members
(the observations for the training sets are
in italics in Table 1). The number of net-
work configurations attempted was 600
(20 generations of 30 populations each).
Best network configurations for the various
partitions are shown in Table 3. The aver-
age Root-Mean-Square-Error of Prediction
(RMSEP) in the test sets was 0.68, imply-
ing that an unknown SST can be predicted
from the relative abundances of the five
nannoplankton species used here with a
precision of ± 0.68° C (Figure 3). Correla-
tion coefficients between observed and
predicted SSTs in the five test sets range
between 0.80 and 0.98 (Figure 4). 

 For the Mediterranean data the num-
ber of samples was 48. We trained the
network using 80% of the samples as the
training set (39 observations) and the
remaining 20% as the test set (nine obser-
vations). This subdivision of the training
and test sets was performed randomly by
the program. Again, five different random
subdivisions of the original data set were
run to generate an error estimate. Also in
this case, the number of network configu-
rations attempted was 600 (20 genera-
tions of 30 populations each). The
configurations of the best networks are
provided in Table 3. The average RMSEP
in the test sets was 0.64, implying that an
unknown oxygen isotope value can be
predicted from the relative abundances of
the selected nannofossil species in this

Figure 1. (A) Diagram showing the general architec-
ture of a back propagation network. Each neuron in the
hidden and output layers receives weighted signals
from the neurons in the previous layer. (B) Diagram
showing the elements of a single neuron in a BP net-
work. In forward propagation, the incoming signals
from the neurons of the previous layer (p) are multi-
plied by the weights of the connections (w) and
summed. The bias (b) is then added, and the resulting
sum is filtered through the transfer function (c), linear
or sigmoidal, to produce the activity (a) of the neuron. 
7
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e-
le
to
core with a precision of ± 0.64 δ18O‰
PDB (Figure 5). Correlation coefficients
between observed and predicted isotope
data in the five test-sets range between
0.64 and 0.96 with an average value of
0.88 (Figure 6). 

SUMMARY AND CONCLUSIONS

By means of the application of the
ANN BP algorithm the input signal from
calcareous nannoplankton assemblages
was predicted in terms of two parameters,
SST and δ18O. The same technique could
be applied to predictions of any type of
physio-chemical variables. The number of
samples in both examples was small, but
the error estimates obtained from the ANN

suggest that even when using small sam-
ples highly reliable results can be
obtained. 

The ability to learn from the examples
reveals the goal of the analysis architec-
ture. The examples could also be repre-
sented by nonlinear and
nonhomogeneous data. In the specific
case of a nannoplankton assemblage, the
examples could comprise absences of
some species in some samples. In the
case of the samples from the California
Bight, the network has realized the best
solution by choosing the samples in such
a way as to have represented in the train-
ing session all the seasons comprising the
time period between October 11, 1991 and

Figure 2. Diagram showing the network structure with five- and eight-input neurons, corresponding to the number of sp
cies of nannoplankton used as input signals in the Californian and Mediterranean studies, respectively. This is an examp
comprising one hidden layer with four neurons and an output layer with a single neuron, corresponding to the variable 
be predicted.
8
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July 20, 1992 (the italic word in Table 1).
So, in this case, the training set includes
the months of October, January, March,
May, June, and July, whereas the test set
consists of December, March, April, May,
June, and July. This arrangement was
made from the neural network automati-
cally, without any information during the
initialization phase. Thus, the ability of the
network to learn from a small, random
data set allows the organisation of the
data in the correct order and with a correct
interpretation.

In the case of the Mediterranean Sea,
the network has selected the best configu-
ration based on training and test sets
established by the program, and the final
chart (Figure 5) shows a good relationship
between predicted and observed values.

In particular, this chart documents a very
similar pattern of change in observed and
predicted δ18O values with increasing core
depth. This demonstrates the optimum
choice of the neural network concerning
the training test-set subdivision. In this
case, there was a large number of ‘zero’
values in the distribution of E. huxleyi in
the lower part of the core. However, this
problem did not in any way harm the final
result. The neural approach reveals a
highly satisfactory result despite the occur-
rence of many ‘zero’ values as well as with
consideration of the relatively few obser-
vations in this dataset. 

The application of ANN to nanno-
plankton data could be potentially useful
for studies of paleoproductivity and paleo-
climate, paleobiogeographic patterns, and
paleo-oceanography. For example, some
areas of nannoplankton research where
ANN might be used involve predictions of
sea surface-water temperatures (SST),
nutrient and micronutrient composition,
species distribution and algal blooms from
the analysis of modern calcareous nanno-
plankton distributions in parts of the World
Ocean.
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Figure 5. Relative abundances of nannofossil species considered in this work and a diagram showing the relationship
between observed and predicted δ18O. ‘Poly.’ in legend means: polynomial regression.
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Figure 6. The correlation coefficients between observed and predicted δ18O in the five test-sets of the Mediterranea
samples are as follows: Partition 1: 0.92; Partition 2: 0.96; Partition 3: 0.93; Partition 4: 0.94; and Partition 5: 0.64.
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